深度优先和广度优先遍历及其 Java 实现

2021年11月6日 2点热度 0条评论 来源: 西楚小羽的窝窝

图的遍历有两种遍历方式:深度优先遍历(depth-first search)和广度优先遍历(breadth-first search)。

因为深度优先需要无路可走时按照来路往回退,正好是后进先出。

广度优先则需要保证先访问顶点的未访问邻接点先访问,恰好就是先进先出。

深度优先

深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。可以看出深度优先遍历是一个递归的过程。
具体算法表述如下:

1 访问初始结点v,并标记结点v为已访问。
2 查找结点v的第一个邻接结点w。
3 若w存在,则继续执行4,否则算法结束。
4 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
5 查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7


伪代码

递归实现
(1)访问顶点v;visited[v]=1;//算法执行前visited[n]=0
(2)w=顶点v的第一个邻接点;
(3)while(w存在)  
           if(w未被访问)
                   从顶点w出发递归执行该算法; 
           w=顶点v的下一个邻接点;

非递归实现
 (1)栈S初始化;visited[n]=0;
 (2)访问顶点v;visited[v]=1;顶点v入栈S
 (3)while(栈S非空)
            x=栈S的顶元素(不出栈);
            if(存在并找到未被访问的x的邻接点w)
                    访问w;visited[w]=1;
                    w进栈;
            else
                     x出栈;

参考:http://blog.csdn.net/collonn/article/details/17923851

广度优先

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。
具体算法表述如下:
1 访问初始结点v并标记结点v为已访问。
2 结点v入队列
3 当队列非空时,继续执行,否则算法结束。
4 出队列,取得队头结点u。
5 查找结点u的第一个邻接结点w。
6 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
1). 若结点w尚未被访问,则访问结点w并标记为已访问。
2). 结点w入队列
3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8


伪代码
(1)初始化队列Q;visited[n]=0;
(2)访问顶点v;visited[v]=1;顶点v入队列Q;
(3) while(队列Q非空)   
              v=队列Q的对头元素出队;
              w=顶点v的第一个邻接点;
             while(w存在) 
                     如果w未访问,则访问顶点w;
                     visited[w]=1;
                     顶点w入队列Q;
                     w=顶点v的下一个邻接点。

Java实现

import java.util.ArrayList;
import java.util.LinkedList;

public class AMWGraph {
    private ArrayList vertexList;//存储点的链表
    private int[][] edges;//邻接矩阵,用来存储边
    private int numOfEdges;//边的数目

    public AMWGraph(int n) {
        //初始化矩阵,一维数组,和边的数目
        edges=new int[n][n];
        vertexList=new ArrayList(n);
        numOfEdges=0;
    }

    //得到结点的个数
    public int getNumOfVertex() {
        return vertexList.size();
    }

    //得到边的数目
    public int getNumOfEdges() {
        return numOfEdges;
    }

    //返回结点i的数据
    public Object getValueByIndex(int i) {
        return vertexList.get(i);
    }

    //返回v1,v2的权值
    public int getWeight(int v1,int v2) {
        return edges[v1][v2];
    }

    //插入结点
    public void insertVertex(Object vertex) {
        vertexList.add(vertexList.size(),vertex);
    }

    //插入结点
    public void insertEdge(int v1,int v2,int weight) {
        edges[v1][v2]=weight;
        numOfEdges++;
    }

    //删除结点
    public void deleteEdge(int v1,int v2) {
        edges[v1][v2]=0;
        numOfEdges--;
    }

    //得到第一个邻接结点的下标
    public int getFirstNeighbor(int index) {
        for(int j=0;j<vertexList.size();j++) {
            if (edges[index][j]>0) {
                return j;
            }
        }
        return -1;
    }

    //根据前一个邻接结点的下标来取得下一个邻接结点
    public int getNextNeighbor(int v1,int v2) {
        for (int j=v2+1;j<vertexList.size();j++) {
            if (edges[v1][j]>0) {
                return j;
            }
        }
        return -1;
    }

    //私有函数,深度优先遍历
    private void depthFirstSearch(boolean[] isVisited,int  i) {
        //首先访问该结点,在控制台打印出来
        System.out.print(getValueByIndex(i)+"  ");
        //置该结点为已访问
        isVisited[i]=true;

        int w=getFirstNeighbor(i);//
        while (w!=-1) {
            if (!isVisited[w]) {
                depthFirstSearch(isVisited,w);
            }
            w=getNextNeighbor(i, w);
        }
    }

    //对外公开函数,深度优先遍历,与其同名私有函数属于方法重载
    public void depthFirstSearch() {
        boolean[] isVisited=new boolean[getNumOfVertex()];
        //记录结点是否已经被访问的数组
        for (int i=0;i<getNumOfVertex();i++) {
            isVisited[i]=false;//把所有节点设置为未访问
        }
        for(int i=0;i<getNumOfVertex();i++) {
            //因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。
            if (!isVisited[i]) {
                depthFirstSearch(isVisited,i);
            }
        }
    }

    //私有函数,广度优先遍历
    private void broadFirstSearch(boolean[] isVisited,int i) {
        int u,w;
        LinkedList queue=new LinkedList();

        //访问结点i
        System.out.print(getValueByIndex(i)+"  ");
        isVisited[i]=true;
        //结点入队列
        queue.addlast(i);
        while (!queue.isEmpty()) {
            u=((Integer)queue.removeFirst()).intValue();
            w=getFirstNeighbor(u);
            while(w!=-1) {
                if(!isVisited[w]) {
                        //访问该结点
                        System.out.print(getValueByIndex(w)+"  ");
                        //标记已被访问
                        isVisited[w]=true;
                        //入队列
                        queue.addLast(w);
                }
                //寻找下一个邻接结点
                w=getNextNeighbor(u, w);
            }
        }
    }

    //对外公开函数,广度优先遍历
    public void broadFirstSearch() {
        boolean[] isVisited=new boolean[getNumOfVertex()];
        for (int i=0;i<getNumOfVertex();i++) {
            isVisited[i]=false;
        }
        for(int i=0;i<getNumOfVertex();i++) {
            if(!isVisited[i]) {
                broadFirstSearch(isVisited, i);
            }
        }
    }
}

上面的public声明的depthFirstSearch()和broadFirstSearch()函数,是为了应对当该图是非连通图的情况,如果是非连通图,那么只通过一个结点是无法完全遍历所有结点的。

下面根据上面用来举例的图来构造测试类:

public class TestSearch {

    public static void main(String args[]) {
        int n=8,e=9;//分别代表结点个数和边的数目
        String labels[]={"1","2","3","4","5","6","7","8"};//结点的标识
        AMWGraph graph=new AMWGraph(n);
        for(String label:labels) {
            graph.insertVertex(label);//插入结点
        }
        //插入九条边
        graph.insertEdge(0, 1, 1);
        graph.insertEdge(0, 2, 1);
        graph.insertEdge(1, 3, 1);
        graph.insertEdge(1, 4, 1);
        graph.insertEdge(3, 7, 1);
        graph.insertEdge(4, 7, 1);
        graph.insertEdge(2, 5, 1);
        graph.insertEdge(2, 6, 1);
        graph.insertEdge(5, 6, 1);
        graph.insertEdge(1, 0, 1);
        graph.insertEdge(2, 0, 1);
        graph.insertEdge(3, 1, 1);
        graph.insertEdge(4, 1, 1);
        graph.insertEdge(7, 3, 1);
        graph.insertEdge(7, 4, 1);
        graph.insertEdge(4, 2, 1);
        graph.insertEdge(5, 2, 1);
        graph.insertEdge(6, 5, 1);

        System.out.println("深度优先搜索序列为:");
        graph.depthFirstSearch();
        System.out.println();
        System.out.println("广度优先搜索序列为:");
        graph.broadFirstSearch();
    }
}

控制台输出:

深度优先搜索序列为:

1 2 4 8 5 3 6 7

广度优先搜索序列为:

1 2 3 4 5 6 7 8


    原文作者:西楚小羽的窝窝
    原文地址: https://blog.csdn.net/Victor_Cindy1/article/details/50433789
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系管理员进行删除。