图的广度优先搜索和深度优先搜索

2021年9月22日 3点热度 0条评论 来源: 云计算小菜鸟

我们知道,算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的。这是因为,图这种数据结构的表达能力很强,大部分涉及搜索的场景都可以抽象成“图”。
图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。具体方法有很多,比如今天要讲的两种最简单、最“暴力”的深度优先、广度优先搜索,还有 A*、IDA* 等启发式搜索算法。
图有两种主要存储方法,邻接表和邻接矩阵。本文使用邻接表来存储图。我这里先给出图的代码实现。需要说明一下,深度优先搜索算法和广度优先搜索算法,既可以用在无向图,也可以用在有向图上。本文仅针对无向图。
首先是使用邻接矩阵存储的无向图:

public class Graph { //邻接表
	private int v;//顶点的个数
	private LinkList adj[];
	
	public Graph(int v){ 
		this.v=v;
		adj=new LinkList[v];
		for(int i=0;i<v;i++){ 
			adj[i]=new LinkList();
		}
	}
	public void addEdge(int s,int t){ 
		adj[s].addNode(adj.length, t);
		adj[t].addNode(adj.length, s);
	}
}

1.广度优先搜索(BFS)

广度优先搜索(Breadth-First-Search),我们平常都把简称为 BFS。直观地讲,它其实就是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索。理解起来并不难,所以我画了一张示意图,你可以看下。

这里面,bfs() 函数就是基于之前定义的,图的广度优先搜索的代码实现。其中 s 表示起始顶点,t 表示终止顶点。我们搜索一条从 s 到 t 的路径。实际上,这样求得的路径就是从 s 到 t 的最短路径。



visited 是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点 q 被访问,那相应的 visited[q]会被设置为 true。
queue 是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。因为广度优先搜索是逐层访问的,也就是说,我们只有把第 k 层的顶点都访问完成之后,才能访问第 k+1 层的顶点。当我们访问到第 k 层的顶点的时候,我们需要把第 k 层的顶点记录下来,稍后才能通过第 k 层的顶点来找第 k+1 层的顶点。所以,我们用这个队列来实现记录的功能。
prev 用来记录搜索路径。当我们从顶点 s 开始,广度优先搜索到顶点 t 后,prev 数组中存储的就是搜索的路径。不过,这个路径是反向存储的。prev[w]存储的是,顶点 w 是从哪个前驱顶点遍历过来的。比如,我们通过顶点 2 的邻接表访问到顶点 3,那 prev[3]就等于 2。为了正向打印出路径,我们需要递归地来打印,你可以看下 print() 函数的实现方式。
掌握了广度优先搜索算法的原理,我们来看一下,广度优先搜索的时间、空间复杂度是多少呢?
最坏情况下,终止顶点 t 离起始顶点 s 很远,需要遍历完整个图才能找到。这个时候,每个顶点都要进出一遍队列,每个边也都会被访问一次,所以,广度优先搜索的时间复杂度是 O(V+E),其中,V 表示顶点的个数,E 表示边的个数。当然,对于一个连通图来说,也就是说一个图中的所有顶点都是连通的,E 肯定要大于等于 V-1,所以,广度优先搜索的时间复杂度也可以简写为 O(E)
广度优先搜索的空间消耗主要在几个辅助变量 visited 数组、queue 队列、prev 数组上。这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是 O(V)

2.深度优先搜索(DFS)

深度优先搜索(Depth-First-Search),简称 DFS。最直观的例子就是“走迷宫”。假设你站在迷宫的某个岔路口,然后想找到出口。你随意选择一个岔路口来走,走着走着发现走不通的时候,你就回退到上一个岔路口,重新选择一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。走迷宫的例子很容易能看懂,我们现在再来看下,如何在图中应用深度优先搜索,来找某个顶点到另一个顶点的路径。
你可以看我画的这幅图。搜索的起始顶点是 s,终止顶点是 t,我们希望在图中寻找一条从顶点 s 到顶点 t 的路径。如果映射到迷宫那个例子,s 就是你起始所在的位置,t 就是出口。我用深度递归算法,把整个搜索的路径标记出来了。这里面实线箭头表示遍历,虚线箭头表示回退。从图中我们可以看出,深度优先搜索找出来的路径,并不是顶点 s 到顶点 t 的最短路径。

理解了深度优先搜索算法之后,我们来看,深度度优先搜索的时、空间间复杂度是多少呢?从我前面画的图可以看出,每条边最多会被访问两次,一次是遍历,一次是回退。所以,图上的深度优先搜索算法的时间复杂度是 O(E),E 表示边的个数。
深度优先搜索算法的消耗内存主要是 visited、prev 数组和递归调用栈。visited、prev 数组的大小跟顶点的个数 V 成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度就是 O(V)

3.总结

广度优先搜索和深度优先搜索是图上的两种最常用、最基本的搜索算法,比起其他高级的搜索算法,比如 A*、IDA* 等,要简单粗暴,没有什么优化,所以,也被叫作暴力搜索算法。所以,这两种搜索算法仅适用于状态空间不大,也就是说图不大的搜索

广度优先搜索,通俗的理解就是,地毯式层层推进,从起始顶点开始,依次往外遍历。
广度优先搜索需要借助队列来实现,遍历得到的路径就是,起始顶点到终止顶点的最短路径。深度优先搜索用的是回溯思想,非常适合用递归实现。换种说法,深度优先搜索是借助栈来实现的。在执行效率方面,深度优先和广度优先搜索的时间复杂度都是 O(E),空间复杂度是 O(V)。

    原文作者:云计算小菜鸟
    原文地址: https://blog.csdn.net/weixin_41724265/article/details/106837015
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系管理员进行删除。