[网络安全自学篇] 二十四.基于机器学习的入侵检测和攻击识别——以KDD CUP99数据集为例

2021年9月10日 10点热度 0条评论 来源: Eastmount

这是作者的系列网络安全自学教程,主要是关于网安工具和实践操作的在线笔记,特分享出来与博友共勉,希望您们喜欢,一起进步。前文分享了Web渗透的第一步工作,涉及网站信息、域名信息、端口信息、敏感信息及指纹信息收集。这篇文章换个口味,将分享机器学习在安全领域的应用,并复现一个基于机器学习的入侵检测和攻击识别。严格意义上来说,这篇文章是数据分析,它有几个亮点:
(1) 详细介绍了数据分析预处理中字符特征转换为数值特征、数据标准化、数据归一化,这都是非常基础的工作。
(2) 结合入侵检测应用KNN实现分类。
(3) 绘制散点图采用序号、最小欧式距离、类标,ROC曲线绘制都是之前没分享的。

文章中也有很多不足之处,恶意代码或入侵检测作者还会继续深入,包括源代码、二进制分析。作者作为网络安全的小白,分享一些自学基础教程给大家,希望你们喜欢。同时,更希望你能与我一起操作进步,作者的目标是分享网络安全自学系列100篇,争取能入门,后续也将深入学习网络安全和系统安全知识并分享相关实验。总之,希望该系列文章对博友有所帮助,写文不容易,大神请飘过,不喜勿喷,谢谢!

安全资源下载地址:https://github.com/eastmountyxz/NetworkSecuritySelf-study
恶意代码下载地址:https://github.com/eastmountyxz/AI-for-Malware-Analysis-

    原文作者:Eastmount
    原文地址: https://blog.csdn.net/Eastmount/article/details/103189405
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系管理员进行删除。