Python爬虫实战,pyecharts模块,Python简单分析高考数据

2021年7月3日 5点热度 0条评论 来源: 楚_阳

前言

今天选择简单且随意地分析一下高考的一些数据~~~

开发工具

Python版本:3.6.4

相关模块:

pyecharts模块;

以及一些Python自带的模块。

环境搭建

安装Python并添加到环境变量,pip安装需要的相关模块即可。

pyecharts模块的安装可参考:

Python简单分析微信好友

“一本正经的分析”

首先让我们来看看从恢复高考(1977年)开始高考报名、最终录取的总人数走势吧:

T_T看来学生党确实是越来越多了。

不过这样似乎并不能很直观地看出每年的录取比例?Ok,让我们直观地看看吧:

看来上大学越来越“容易”之说不是空穴来风的,总录取比例高的可怕~~~

那么各省的情况呢?

由于各省高考最终录取人数的统计标准不一样,有些是只统计本科,有些是都统计的,为了避免统计标准不一而带来的不公平对比,我们只分析各省的高考报考人数。

从2010年开始到今年(2018年)各省份高考考生数量的分布图如下:

T_T河南的高考考生人数真是一枝独秀。

那么各省的大学数量又是如何分布的呢?以公办本科大学数量作为统计标准,其分布图大概是这样的:

Emmm。北京和江苏分别位居第一和第二名。想想也是必然T_T

那么985&211高校的分布又如何呢?

“那就这样吧,再爱都曲终人散了。”看到这个默默不说话了。

以省份为x轴,年份为y轴,该年该省报考的考生人数为z轴来更直观地看看各省每年的高考考生数量变化情况吧:

上图中省份的顺序是这样的:

北京、四川、陕西、江西、吉林、宁夏、广西、内蒙古、甘肃、西藏、福建、上海、广东、山东、浙江、河南、安徽、江苏、河北、黑龙江、湖南、湖北、山西、云南、贵州、海南、辽宁、重庆、天津、青海、新疆,台湾因为没有数据,所以没有加入。

T_T河南的高考考生数量真的恐怖。

文章到这里就结束了,喜欢的朋友可以点波关注我每天分享Python数据爬虫案例系列(https://www.jianshu.com/nb/45921843),下篇文章分享是Python简单分析Chrome浏览器浏览记录

为了感谢读者们,我想把我最近收藏的一些编程干货分享给大家,回馈每一个读者,希望能帮到你们。

干货主要有:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

⑥ 两天的Python爬虫训练营直播权限

*All done~完整源代码详见个人简介或者私信获取相关文件。。

    原文作者:楚_阳
    原文地址: https://www.cnblogs.com/daimubai/p/14964659.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系管理员进行删除。